Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное бюджетное образовательное учреждение высшего образования

«Донской государственный аграрный университет»

КИМИХ

(органическая и физколлоидная)

методические указания с контрольными заданиями

Персиановский

2017

УДК 547 (075.8)

ББК 24.23:74.58

X - 46

Рецензенты: Флик Е.А., к.х.н., доцент каф.естественнонаучных дисциплин ДГАУ; Ильчибаева И.Б., к.т.н., доцент каф. химических технологий ЮРГПУ(НПИ)

X 46 Химия (органическая и физколлоидная): методические указания с контрольными заданиями / сост. С.Н. Горобец.- Персиановский: Донской ГАУ, 2017.- 19 с.

Методические указания с контрольными заданиями по химии (органической и физколлоидной) предназначены для студентов заочной формы обучения по направлениям подготовки: 19.03.03 Продукты питания животного происхождения, 19.03.04 Технология продукции и организация общественного питания, 20.03.01 Техносферная безопасность, 38.03.07 Товароведение

УДК 547 (075.8)

ББК 24.23:74.58

Утверждено методической комиссией факультета ветеринарной медицины (протокол № 3 от 30.10. 2017 г.)

Рекомендовано к изданию методическим советом университета (протокол № 7 от 29.11. 2017 г.)

© Горобец С.Н., составление, 2017

© ФГБОУ ВО Донской ГАУ, 2017

Введение

Контрольная работа является одним из видов самостоятельной работы студента.

Полученные знания в ходе самостоятельной подготовки, предоставляют студенту возможность творчески раскрыться, проявить инициативу, приобрести профессиональные умения.

В процессе работы над контрольной работой студенты должны освоить следующие знания и умения:

Знания:

- теоретические основы органической химии;
- основные классы органических соединений;
- направления развития теоретической и практической органической химии;
 - фундаментальные разделы физической и коллоидной химии;
 - поверхностные явления;
 - классификация дисперсных систем;
 - методы получения и очистки коллоидных систем;
 - основные свойства и строение коллоидных систем.

Умения:

- решать типовые задачи по основным разделам курса органической, физической и коллоидной химии;
- использовать законы органической, физической и коллоидной химии при анализе и решении проблем профессиональной деятельности.

Требования к оформлению контрольной работы

Контрольная работа состоит:

Из написания теоретических вопросов и практических заданий.

При рассмотрении теоретического вопроса студенту необходимо:

- провести анализ литературных источников;
- раскрыть заданную тему;
- сделать аргументированные выводы;

При рассмотрении практического задания (решение задач, составление уравнений химических реакций) студенту необходимо:

- ознакомиться с условиями задания;
- рассмотреть учебную литературу, касающуюся данного задания;
- выполнить упражнения и решить задачи.

Написание работы:

К написанию работы преступают после усвоения учебного материала, чтобы достичь цельного и грамотного рассмотрения поставленных в ней вопросов, показать взаимосвязь теоретических и практических проблем.

Недопустимо механическое переписывание текста учебного материала при ответах на теоретические вопросы.

К задачам должны прилагаться решения.

Оформление работы:

Контрольная работа может быть оформлена в виде рукописного текста в школьной тетради в клетку. На тетради должны быть указаны: фамилия, имя, отчество, номер зачетной книжки, специальность, курс, номер группы.

В печатном виде контрольной работы может излагаться на листе белой бумаги формата A4 (210х297мм). Все поля страницы по 20 мм. Шрифт 14 (Times New Roman). Межстрочный интервал 1,5. Автоматическая расстановка переносов.

Подбор литературы:

Подбор литературы осуществляется студентом самостоятельно и во многом определяется выбранной тематикой.

Перед написанием контрольной работы следует ознакомиться с программой по курсу, полным списком литературы и литературой рекомендованной по данной теме в курсе лекций, а также при необходимости консультироваться с преподавателем.

Просмотреть систематический, предметный и алфавитный каталоги доступных для библиотек автора. После составления списка литературы необходимо приступить к её изучению, делать краткие выписки, записи в виде цитат, делать пометки о выходных данных источника (Фамилия и инициалы автора, название работы, место и год издания, номера страниц), что непременно облегчит в дальнейшем работу со сносками.

Рекомендуемая литература

- 1. Заплишный, В.Н. Органическая химия [Текст]: учебник для с-х вузов / В. Н. Заплишный. Краснодар: Печатный двор Кубани, 1999. 368 с.
- 2. Органическая химия. Кислородсодержащие органические соединения. Ч.3. Карбоновые кислоты и их производные [Текст]: учебное пособие / сост.: С.Н. Горобец, А.А. Савинова, Н.П. Фалынскова; Донской ГАУ. Персиановский: ДонГАУ, 2014. 43 с.
- 3. Органическая химия. Ч. 4. Углеводы (моносахариды, дисахариды, полисахариды) [Текст] : учебное пособие / сост.: С.Н. Горобец, А.А. Савинова, Н.П. Фалынскова; Донской ГАУ. -Персиановский :ДонГАУ, 2015. 33 с.
- 4. Белик, В.В. Физическая и коллоидная химия [Текст] : учебник для студ. сред.проф. учеб. заведений / В. В. Белик, К. И. Киенская. 2-е изд., стер. М. : Академия, 2006. 288 с.
- 5. Сборник задач по физической и коллоидной химии [Электронный ресурс]: учебное пособие / С.Л. Белопухов, Т.В. Шнее, С.Э. Старых [и др.]. М.: РГАУ-МСХА им. К.А. Тимирязева, 2012. 202 с. Режим доступа:http://biblioclub.ru/index.php?page=book&id=1448955
- 6. Кукушкина, И.И. Коллоидная химия [Электронный ресурс]: учебное пособие /И.И. Кукушкина, А.Ю. Митрофанов. Кемерово :КемеГУ, 2010. 216 с. Режим доступа:http://biblioclub.ru/index.php?page=book&id=232755

Варианты контрольных заданий

Номер варианта (последняя цифра шифра зачетной книжки)	Номера вопросов для контрольной работы											
1	1	11a	12a	13	23a	24a	25a	27	37	47	57	67
2	2	116	126	14	236	24б	25б	28	38	48	58	68
3	3	11в	12в	15	23в	24в	25в	29	39	49	59	69
4	4	11г	12г	16	23г	24г	25г	30	40	50	60	70
5	5	11д	12д	17	23д	24д	25д	31	41	51	61	71
6	6	11e	12e	18	23e	24e	25e	32	42	52	62	72
7	7	11ж	12 ж	19	23ж	24ж	26a	33	43	53	63	73
8	8	113	123	20	233	243	26б	34	44	54	64	74
9	9	11и	12и	21	23и	24и	26в	35	45	55	65	75
0	10	11к	12 к	22	23к	24к	26г	36	46	56	66	76

Часть I. Органическая химия

- 1. Теория строения органических соединений А.М. Бутлерова. Зависимость свойств органических веществ от строения. Изомерия.
- 2. Гомологический ряд предельных углеводородов. Номенклатура алканов, их физические и химические свойства. Метан (sp³-гибридизация).
- 3. Этиленовые углеводороды. Номенклатура, химические свойства. Получение и применение в промышленности.
- 4. Ацетилен. Особенности строения (sp-гибридизация, тройная связь). Химические свойства, применение.
- 5. Бензол, его электронное строение, химические свойства. Промышленное получение и применение бензола.
- 6. Спирты (строение, химические свойства). Этанол, синтез и применение. Особенности глицерина.
- 7. Фенол, его строение, взаимное влияние атомов в молекуле. Химические свойства фенола в сравнении со свойствами спиртов. Применение фенола.
- 8. Альдегиды, их строение, химические свойства. Получение и применение муравьиного и уксусного альдегидов.
- 9. Карбоновые кислоты: строение карбоксильной группы, физические и химические свойства. Главные представители одноосновных кислот: муравьиная (ее особенности), уксусная, стеариновая, олеиновая.
- 10. Амины как органические основания, их реакция с водой и кислотами. Анилин, его получение из нитробензола.
- 11. Изобразить структурные формулы изомеров следующих предельных углеводородов: а) 2-метилпропана, б) 2-метилбутана, в) диметилпропана, г) 2,3-диметилбутана, д) 3-метил-4-этилгептана, е) 3,3-диметилпентана, ж) 2,2-диметилбутана, з) 2-метил-3-этилоктана, и) 3-этил-пентана, к) 2,2-дибутилдекана.
- 12. Напишите структурные формулы следующих непредельных углеводородов: а) 2,5-диметил-1-гексен,

- б) 2,4,4-триметил-2-пентен,
- в) 2,3-диметил-2-бутен,
- г) 3-этил-3-гексен,
- д) 4-метил-2-пентин,
 - е) 2,5-диметил-3-гексин,
 - ж) 3,4- диметил-1-пентин,
 - з) 2,2,5,5-триметил-3-гексин,
 - и) 2,7- диметил-3-этил-4-октин,
 - к) 3,3-диметил-1-бутин
- 13. Напишите структурные формулы следующих соединений:
- а) 2-метил-3-изопропил-3-гексанол
 - б) 2-метил-1,4-бутандиол
- 14. Составьте структурные формулы следующих веществ:
 - а) 3- пропилфенол;
 - б) 2,4,6 -трибромфенол
- 15. Дополнить уравнение реакции:
- a) $C_2H_5OH + K \rightarrow$
- 6) $C_2H_5OH + HBr$ →
- 16. Дополнить уравнение реакции:
- a) $CH_3 CH_2 OH + NH_3 \rightarrow$
- б) CH₂-OH

CH₂- OH

- 17. Напишите уравнения реакций получения следующих спиртов путем гидратации соответствующих алкенов:
- а) 3,3-диметил-2-бутанол
- б) 2-метил-2-пентанол
 - 18. Продолжить уравнение реакции:

- a) $C_6H_5OH+KOH \rightarrow$
- б) CH₃COOH+ CH₃CH₂CH₂OH→
- 19. При помощи какой реакции можно получить многоатомный спирт:
- а) окисление альдегидов
- б) гидролиз 1,2-дигалогеналканов
- в) реакция Кучерова
- г) гидратация алкенов

Написать уравнение реакции.

- 20. Напишите структурные формулы следующих соединений:
- а) 2-метилпентаналь
 - б) изомасляный альдегид

Проведите реакции окисления данных соединений реактивом Фелинга и назовите полученные соединения.

- 21. Напишите структурные формулы изомеров альдегидов и кетонов общей формулой $C_5H_{10}O$, назовите их по номенклатуре ИЮПАК.
- 22. Напишите схемы реакций восстановления и окисления:
- а) бензальдегида
 - б) ацетона
- 23. Напишите структурные формулы следующих карбоновых кислот
- а) 2-бромопропановая кислота,
- б) α-бромоизомасляная кислота,
- в) янтарная кислота,
- г) 3-оксопентановая кислота,
- д) масляная кислота,
- е) бензойная кислота,
- ж) кротоноваякислота,
- з) м-нитробензойнаякислота,
- и)2,3-диметил-3-бутеновая кислота,

- к) щавелевая кислота.
- 24. Назовите приведенные ниже соединения:
- a)HOOC—COOH, CH₂=CH-COOH,
 - б)НСООН, CH₃-CHBr-COOH,
 - B) CH₂=CH- CH₂- COOH, CH₃-CH₂-COONa,
- Γ) CH₃CH₂CH₂COOH, Cl₂CHCOOH,
- д) CH₃-CH=CH-COOH,(CH₃COO)₂Ca,
- e)HOOC-CH₂-COOH,HO-CH₂-CH₂-COOH,
- ж) CH₂=CH-CH₂COOH,(CH₃COO)₂ Mg,
- 3)HOOC-CH₂-CH₂-COOH,CH₃-CO-NH₂,
- и) C₆H₅COOH, CH₃ COOH
- κ)C₁₇H₃₅COOH,CH₃-C \equiv C-COOH
- 25. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:
- а) углерод \to метан \to метилбромид \to метанол \to формальдегид \to муравьиная кислота;
- б) этан \rightarrow этилбромид \rightarrow этанол \rightarrow уксусный альдегид \rightarrow уксусная кислота;
 - в) этан \rightarrow хлористый этил \rightarrow этанол \rightarrow этилен \rightarrow дихлорэтан;
- г) ацетилен \to уксусный альдегид \to уксусная кислота \to уксуснобутиловый эфир;
- д) ацетилен \rightarrow этилен \rightarrow этанол \rightarrow диэтиловый эфир;
- e) $rekcan \rightarrow fenson \rightarrow fenson \rightarrow finite mukpunobas кислота.$

- 26. Составьте уравнения реакций по предложенной ниже схеме
- a) $C_3H_6 \rightarrow C_3H_7C1 \rightarrow C_3H_7OH \rightarrow CH_3 O C_3H_7$
- $6C_2H_5OH \rightarrow C_2H_4 \rightarrow C_2H_5Cl \rightarrow C_2H_5OH$
- B) $C_2H_2 \rightarrow C_2H_4 \rightarrow C_2H_5OH \rightarrow C_2H_5ONa$
- Γ) $C_2H_2 \rightarrow C_6H_6 \rightarrow C_6H_5Cl \rightarrow C_6H_5OH \rightarrow$ тринитрофенол.
- 27. Какие из следующих глицеридов входят в состав твердых жиров:
 - а) диолеолинолеин

- г) трипальмитин
- б) тристеаринд)трилинолеин
- в) триолеин
- 28. Кислоты, образующие жиры, как правило, имеют неразветвленное строение. Исходя из этого, напишите структурные формулы триглицеридов лауриновой $C_{12}H_{24}O_2$ и миристиновой $C_{14}H_{28}O_2$ кислот, являющихся составными частями некоторых жиров.
- 29. Одной из основных частей коровьего масла является глицериновый эфир масляной кислоты. Напишите формулу этого соединения.
- 30. Напишите схему реакции образования мальтозы и ее реакцию с раствором Фелинга при нагревании.
- 31. Напишите схемы реакции образования целлобиозы и ее взаимодействия с оксидом серебра при нагревании.
- 32. Напишите формулы первичных, вторичных и третичных аминов состава C_4 $H_{11}N$. Назовите их.
- 33. Реакцией восстановления соответствующих нитросоединений и нитрилов получите 2-аминопропан, анилин и бензиламин.
- 34. Напишите схемы реакций этаноламина и о-аминофенола с соляной кислотой и этанолом.
- 35. Напишите схемы диссоциации цистина и триптофана в кислой, щелочной и нейтральной средах.
- 36. Напишите схемы образования следующих нуклеотидов: адениловой кислоты; дезоксицитидиловой кислоты.

- 37. Сколько граммов брома может быть поглощено 2,8 л этилена?
- 38. При действии воды на 1 кг технического карбида кальция выделилось 260 л ацетилена. Вычислить содержание в нем CaC₂.
- 39. Рассчитать количество бензола, необходимое для получения 20 кг фенола, если выход продукта составляет 80 %.
- 40. Сколько литров водорода получится при взаимодействии 23 г этилового спирта с 2,5 г натрия.
- 41. Для нейтрализации 11,4 г столового уксуса понадобилось 18,24 мл водного раствора гидроксида натрия концентрацией 0,5 моль/л. Вычислить процентное содержание уксусной кислоты в столовом уксусе.
- 42. При брожении глюкозы получено 115 г этанола. Сколько при этом выделилось углекислого газа (н.у.)?
- 43. При гидролизе 223 г жира тристеарина было получено 22,5 г глицерина. Вычислить процентное содержание примесей в жире.
- 44. Восстановлением 61,5 г нитробензола было получено 44 г анилина. Определите выход продукта в процентах.
- 45. Сколько потребуется формиата натрия для получения 4,6 г муравьиной кислоты, если выход продукта составляет 90%.
- 46. Сколько потребуется кислорода для получения 900 г формальдегида из метанола?

Часть 2. Физколлоидная химия

- 47. Кратко охарактеризуйте твердое, жидкое, газообразное и плазменное состояние вещества. Укажите название фазовых переходов. Приведите уравнение состояния идеального газа.
- 48. Дать определение понятиям: катализ, катализатор (положительный, отрицательный), каталитические яды. Биологические катализаторы –ферменты. Их особенности и отличия от химических катализаторов.
- 49. Закон Бугера-Ламберта-Бера. Определение оптической плотности и концентрации растворов фотоколориметрическим методом.
- 50. Диффузия и осмос в растворах. Биологическое значение осмотических процессов.
- 51. Виды кислотности растворов: активная и общая кислотность. Значение оценки уровня кислотности растворов в технологических прцессах и при определении качества продуктов.
- 52. Диффузный потенциал. Биологическое значение диффузных и мембранных потенциалов.
- 53. Дайте определение понятиям: сорбция, сорбент, сорбтив, адсорбция, абсорбция, хемосорбция, десорбция. Приведите примеры твердых природных сорбентов.
- 54. Дайте определение понятиям: коагуляция, пептизация, седиментация. Укажите факторы, вызывающие коагуляцию коллоидных растворов. Сопоставьте процессы коагуляции и пептизации. Роль процессов пептизации и коагуляции в природе и в технике.

- 55. Эмульсии, методы получения, классификация, стабилизация. Обращение фаз эмульсий. Эмульгаторы для эмульсий первого и второго рода. Значение эмульсий в пищевой промышленности.
- 56. Студни, студнеобразование, факторы, влияющие на процесс студнеобразования. Свойства студней.
- 57.В 250 мл раствора содержится 0,1 г гидроксида натрия. Вычислите pH раствора, считая плотность его равной 1 г/мл.
 - 58.Вычислите рН 0,015 М раствора лимонной кислоты.
 - 59. В 2 л воды растворено 1,7 г бензойной кислоты и добавлено 0,17 г бензоата калия. Считая объем полученного раствора примерно равным 2 л, рассчитайте его рН.
- 60. Смешали равные объемы 0,25 М раствора муравьиной кислоты и 0,1 М раствора гидроксида калия. Вычислите концентрацию формиат-ионов в полученном растворе и его рН.
- 61. К 150 мл воды прибавили 12,00 мл 0,30 М раствора муравьиной кислоты и 15,00 мл 0,10 М раствора формиата калия. Определите рН полученного раствора.
- 62. Определите температуру кипения и температуру замерзания раствора фенола (C_6H_5OH) в воде с массовой долей фенола 20 %.
- 63. Определите массовую долю KOH в растворе, если он замерзает при температуре минус $0,519\,^{\circ}C$. Кажущаяся степень диссоциации щелочи в растворе равна 0,86.
 - 64. В каком соотношении (по массе) надо смешать воду и глицерин, чтобы получить смесь, замерзающую при температуре минус 20°C?
 - 65. При какой температуре будет кипеть водный раствор с массовой долей сахара 0,5?
 - 66. При какой температуре замерзнет водный раствор, в 100 г которого содержится 0,022 моль мальтозы? Криоскопическая постоянная воды равна 1,86 К кг/моль.

- 67. Золь йодида серебра получен при постепенном добавлении к $20\text{cm}^3~0,01\text{н}$ раствора КІ $15\text{cm}^3~0,2\%$ ного раствора нитрата серебра. Написать формулу мицеллы образующегося золя и определить направление движения частиц его в электрическом поле. Плотность раствора нитрата серебра принять равной единице.
 - 68. Какой объем 0,005н AgNO $_3$ надо прибавить к 20см 3 0,015н KI, чтобы получить положительный золь иодида серебра? Написать формулу мицеллы.
 - 69.3оль гидроксида железа (III) получен при добавлении к 85cm^3 кипящей дистиллированной воды 15cm^3 2%-ного раствора хлорида железа (III). При этом соль частично подвергается гидролизуFeCl₃+3H₂O \leftrightarrow Fe(OH)₃+3HCl.
 - 70.Написать возможные формулы мицелл золя $Fe(OH)_3$ учитывая, что при образовании частиц гидроксида железа (III) в растворе присутствовали следующие ионы: Fe^{3+} , FeO^+ ; H^+ ; Cl^- .
 - 71.3оль бромида серебра получен смешением 25см^3 0,008н KBr и 18см^3 0,0096н AgNO₃. Определить знак заряда частиц и составить формулу мицелл золя.
 - 72. Свежеосажденный осадок гидроксида алюминия обработали небольшим количеством соляной кислоты, недостаточным для полного растворения осадка. При этом образовался золь Al(OH)₃. Написать формулу мицеллы золя гидроксида алюминия, учитывая, что в электрическом поле частицы золя перемещаются к катоду.
 - 73. Какие объемы 0,029%-ного раствора NaCl и 0,001н AgNO $_3$ надо смешать, чтобы получить незаряженные частицы золя AgCl. Плотность раствора NaCl принять равной единице.
 - 74.Опредлите, во сколько раз поверхностная активность цетилового спирта ($C_{16}H_{33}OH$) больше поверхностной активности гептанола ($C_7H_{15}OH$).

75. Определите величину адсорбции водного раствора капроновой кислоты ($C_5H_{11}COOH$) при $15^{\circ}C$, если ее концентрация составляет 0,25 моль/л, поверхностное натяжение раствора 35×10^{-3} H/м, а поверхностное натяжение воды равно $73,4\times10^{-3}$ H/м.

76. Определите величину адсорбции водного раствора пеларгоновой кислоты ($C_8H_{17}COOH$) при $10^{\circ}C$, если ее концентрация составляет 0,05 моль/л. Поверхностное натяжение воды при указанной температуре равно $74,2\times10^{-3}$ H/м, исследуемого раствора 57×10^{-3} H/м.

Литература

- 1. Органическая химия [Текст]: методическое пособие по изучению дисциплины и выполнению контрольных работ для студентов заочного отделения агрономических специальностей / сост. : О.В. Степанова, А.А. Савинова, Н.П. Фалынскова.-Персиановский: ДонГАУ, 2011.- 80с.
- 2. Физическая и коллоидная химия [Текст]:методические указания по изучению дисциплины и задания для контрольных работ для студентов ФЗО по специальностям: 260200 —Продукты питания животного происхождения; 240700 Биотехнология; 260800 —Технология продукции и организация общественного питания; 100800 —Товароведение и экспертиза товаров; 110100 Агрохимия и агропочвоведение; 110400 —Агрономия; 110500 Садоводство; 110900 Технология производства и переработки с.-х. продукции / сост.: Н.В. Яровой, Н.М. Сербиновская, О.Н. Горобцова, В.А. Мишустин.-Персиановский: ДонГАУ, 2013.- 38 с.
- 3. Химия (общая, неорганическая, аналитическая) [Текст]: методические указания и контрльные задания для студентов первого курса заочного отделения / сост. : С.Н. Горобец, Е.А. Флик. Персиановский: ДонГАУ, 2014. 43 с.

Содержание

Введение	3
Требования к оформлению контрольной работы	4
Рекомендуемая литература	6
Варианты контрольных заданий	7
Часть І. Органическая химия	8
Часть 2. Физколлоидная химия	14
Литература	18

Учебное издание

ХИМИЯ (органическая и физколлоидная)

методические указания с контрольными заданиями

Составитель: Горобец Светлана Николаевна

Издается в авторской редакции

Сдано в набор 15.01.2018 г Формат 60*84 1/16 Усл. печ. л. 1,2 Тираж 50